Potential cholestatic activity of various therapeutic agents assessed by bile canalicular membrane vesicles isolated from rats and humans.
نویسندگان
چکیده
The active transport of solutes mediated by the bile salt export pump (BSEP/ABCB11) and multidrug resistance associated protein-2 (MRP2/ABCC2) are thought to involve bile acid-dependent and -independent bile formation, respectively. To evaluate the potential of therapeutic agents as inhibitors of such transporters on bile canalicular membranes, we examined the inhibition of the primary active transport of typical substrates by 15 drugs, clinically known to cause cholestasis in canalicular membrane vesicles. The inhibition by most of the compounds in rat canalicular membrane vesicles (CMVs) was minimal or observed at much higher concentrations than obtained in clinical situations. However, cloxacillin, cyclosporin A and midecamycin inhibited BSEP, and cyclosporin A and midecamycin inhibited MRP2 with an inhibition constant close to the clinical concentration. By comparing the inhibition potential between rat and human CMVs, the inhibition of BSEP- and MRP2-mediated transport by midecamycin and cyclosporin A was relatively similar whereas the inhibitory effect on BSEP-mediated transport by cloxacillin and glibenclamide was more marked in humans than in rats. These results suggest that the majority of cholestasis-inducing drugs have a minimal inhibitory effect on rat BSEP and MRP2 although species differences in inhibitory potential should be considered, especially in the case of BSEP.
منابع مشابه
Ethinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver.
We investigated the effects of 17 alpha-ethinylestradiol treatment of rats on various transport functions in isolated basolateral and canalicular liver plasma membrane vesicles. Both membrane subfractions were purified to a similar degree from control and cholestatic livers. Although moderate membrane lipid alterations were predominantly observed in basolateral vesicles, no change in basolatera...
متن کاملCholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: in vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat.
Troglitazone is a thiazolidinedione insulin sensitizer drug for the treatment of type 2 non-insulin-dependent diabetes mellitus (NIDDM). Based on an increasing number of reports on troglitazone-associated liver toxicity, the cholestatic potential of troglitazone has been investigated. Rapid and dose-dependent increases in the plasma bile acid concentrations were observed in rats after a single ...
متن کاملMechanisms of hepatic transport of cyclosporin A: an explanation for its cholestatic action?
The hepatic transport of the immunosuppressive Cyclosporin A (CyA) was studied using liposomal phospholipid membranes, freshly isolated rat hepatocytes and bile canalicular plasma membrane vesicles from rat liver. The Na(+)-dependent, saturable uptake of the bile acid 3H-taurocholate into isolated rat liver cells was apparently competitively inhibited by CyA. However, the uptake of CyA into the...
متن کاملExtrahepatic obstructive cholestasis reverses the bile salt secretory polarity of rat hepatocytes.
To elucidate the consequences of extrahepatic cholestasis on the structure and function of hepatocytes, we studied the effects of bile duct ligation on the turnover, surface distribution, and functional activity of the canalicular 100-kD bile salt transport protein (cBSTP). Basolateral (blLPM) and canalicular (cLPM) liver plasma membrane vesicles were purified to the same degree from normal and...
متن کاملCyclosporin A reduces canalicular membrane fluidity and regulates transporter function in rats.
Changes of the biliary canalicular membrane lipid content can affect membrane fluidity and biliary lipid secretion in rats. The immunosuppressant cyclosporin A is known to cause intrahepatic cholestasis. This study investigated whether cyclosporin A influenced canalicular membrane fluidity by altering membrane phospholipids or transporter expression. In male Sprague-Dawley rats, a bile-duct can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and pharmacokinetics
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2003